32 research outputs found

    New SDW phases in quasi-one-dimensional systems dimerized in the transverse direction

    Full text link
    The spin density wave instabilities in the quasi-one-dimensional metal (TMTSF)_2ClO_4 are studied in the framework a matrix random phase approximation for intra-band and inter-band order parameters. Depending on the anion ordering potential V which measures the lattice doubling in the transverse direction, two different instabilities are possible. The SDW_0 state at low values of V is antiferromagnetic in b direction and has the critical temperature that decreases rapidly with V. The degenerated states SDW_(+-), stable at higher values of V, are superpositions of two magnetic orders, each one on its subfamily of chains. As V increases the ratio between two components of SDW_(+-) tends to zero and the critical temperature increases asymptotically towards that of SDW instability for a system having perfect nesting and no anion order. At intermediate V the metallic state can persist down to T=0.Comment: Submitted to Europhysics Letter

    Dielectric properties of multiband electron systems: II - Collective modes

    Full text link
    Starting from the tight-binding dielectric matrix in the random phase approximation we examine the collective modes and electron-hole excitations in a two-band electronic system. For long wavelengths (q→0{\bf q}\rightarrow0), for which most of the analysis is carried out, the properties of the collective modes are closely related to the symmetry of the atomic orbitals involved in the tight-binding states. In insulators there are only inter-band charge oscillations. If atomic dipolar transitions are allowed, the corresponding collective modes reduce in the asymptotic limit of vanishing bandwidths to Frenkel excitons for an atomic insulator with weak on-site interactions. The finite bandwidths renormalize the dispersion of these modes and introduce a continuum of incoherent inter-band electron-hole excitations. The possible Landau damping of collective modes due to the presence of this continuum is discussed in detail.Comment: 25 pages, LaTeX, to appear in Z.Phys.

    Pauli and orbital effects of magnetic field on charge density waves

    Full text link
    Taking into account both Pauli and orbital effects of external magnetic field we compute the mean field phase diagram for charge density waves in quasi-one-dimensional electronic systems. The magnetic field can cause transitions to CDW states with two types of the shifts of wave vector from its zero-field value. It can also stabilize the field-induced charge density wave. Furthermore, the critical temperature shows peaks at a new kind of magic angles.Comment: 3 pages, 1 figure include

    Photo-emission properties of quasi-one-dimensional conductors

    Full text link
    We calculate the self-energy of one-dimensional electron band with the three-dimensional long range Coulomb interaction within the random phase approximation, paying particular attention to the contribution coming from the electron scatterings on the collective plasmon mode. It is shown that the spectral density has a form of wide feature at thr frequency scale of the plasmon frequency, without the presence of quasi-particle delta-peaks. The relevance of this result with respect to experimental findings and to the theory of Luttinger liquids is discussed.Comment: 4 pages, 2 figure

    Acoustic collective excitations and static dielectric response in incommensurate crystals with real order parameter

    Get PDF
    Starting from the basic Landau model for the incommensurate-commensurate materials of the class II, we derive the spectrum of collective modes for all (meta)stable states from the corresponding phase diagram. It is shown that all incommensurate states posses Goldstone modes with acoustic dispersions. The representation in terms of collective modes is also used in the calculation and discussion of static dielectric response for systems with the commensurate wave number in the center of the Brillouin zone.Comment: 7 pages, 4 figures, REVTe

    Magnetic oscillations and field induced spin density waves in (TMTSF)_2ClO_4

    Full text link
    We report an analysis of the effects of magnetic field on a quasi-one-dimensional band of interacting electrons with a transverse dimerizing potential. One-particle problem in bond-antibond representation is solved exactly. The resulting propagator is used to calculate the spin-density-wave (SDW) response of the interacting system within the matrix RPA for the SDW susceptibility. We predict the magnetic field induced transition of the first order between interband SDW_0 and intraband SDW_(+-) phases. We reproduce the rapid oscillations with a period of 260 Tesla and the overal profile of the TMTSF_2ClO_4 phase diagram.Comment: 6 pages, 3 figure

    Dielectric properties of multiband electron systems: I - Tight-binding formulation

    Full text link
    The screened electron-electron interaction in a multi-band electron system is calculated within the random phase approximation and in the tight-binding representation. The obtained dielectric matrix contains, beside the usual site-site correlations, also the site-bond and bond-bond correlations, and thus includes all physically relevant polarization processes. The arguments are given that the bond contributions are negligible in the long wavelength limit. We analyse the system with two non-overlapping bands in this limit, and show that the corresponding dielectric matrix reduces to a 2Ă—22\times2 form. The intra-band and inter-band contributions are represented by diagonal matrix elements, while the off-diagonal elements contain the mixing between them. The latter is absent in insulators but may be finite in conductors. Performing the multipole expansion of the bare long-range interaction, we show that this mixing is directly related to the symmetry of the atomic orbitals participating in the tight-binding electronic states. In systems with forbidden atomic dipolar transitions, the intra-band and inter-band polarizations are separated. However, when the dipolar transitions are allowed, the off-diagonal elements of the dielectric matrix are of the same order as diagonal ones, due to a finite monopole-dipole interaction between the intra-band and inter-band charge fluctuations.Comment: 32 pages, LaTeX, to appear in Z.Phys.

    Phase Diagram for Charge Density Waves in a Magnetic Field

    Get PDF
    The influence of an external magnetic field on a quasi one-dimensional system with a charge density wave (CDW) instability is treated within the random phase approximation which includes both CDW and spin density wave correlations. We show that the CDW is sensitive to both orbital and Pauli effects of the field. In the case of perfect nesting, the critical temperature decreases monotonously with the field, and the wave vector of the instability starts to shift above some critical value of magnetic field. Depending on the ratio between the spin and charge coupling constants and on the direction of the applied magnetic field, the wave vector shift is either parallel (CDWxCDW_x order) or perpendicular (CDWyCDW_y order) to the most conducting direction. The CDWxCDW_x order is a field dependent linear combination of the charge and spin density waves and is sensible only to the Pauli effect. The wave vector shift in CDWyCDW_y depends on the interchain coupling, but the critical temperature does not. This order is affected by the confinement of the electronic orbits. By increasing the relative strength of the orbital effect with respect to the Pauli effect, one can destroy the CDWyCDW_y, establishing either a CDWxCDW_x, or a CDW0CDW_0 (corresponding to perfect nesting wave vector). We also show that by increasing the imperfect nesting parameter, one passes from the regime where the critical temperature decreases with the field to the regime where it is initially enhanced by the orbital effect and eventually suppressed by the Pauli effect. For a bad nesting, the quantized phases of the field-induced CDW appear.Comment: 30 pages (LaTeX) + 15 figure

    Collective modes in uniaxial incommensurate-commensurate systems with the real order parameter

    Full text link
    The basic Landau model for uniaxial systems of the II class is nonintegrable, and allows for various stable and metastable periodic configurations, beside that representing the uniform (or dimerized) ordering. In the present paper we complete the analysis of this model by performing the second order variational procedure, and formulating the combined Floquet-Bloch approach to the ensuing nonstandard linear eigenvalue problem. This approach enables an analytic derivation of some general conclusions on the stability of particular states, and on the nature of accompanied collective excitations. Furthermore, we calculate numerically the spectra of collective modes for all states participating in the phase diagram, and analyze critical properties of Goldstone modes at all second order and first order transitions between disordered, uniform and periodic states. In particular it is shown that the Goldstone mode softens as the underlying soliton lattice becomes more and more dilute.Comment: 19 pages, 16 figures, REVTeX, to be published in Journal of Physics A: Mathematical and Genera
    corecore